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0. Introduction

An operator-stable (OS) probability measure 1i on a normed finite-dimenmional real

vector space V is the limit distribution of operator normed and centered sums of

1
a sequence of i.i.d. random vectors in V. The classical stable laws on IR are

a special case. If L is full and operator stable, then vi is infinitely divisible

so if is the ch.f. of i, then for t >0, t is the ch.f. of an infinitely divisi-

t
ble measure w . The role of the index in the one-dimensional case is played by an

invertible linear operator B on V called the exponent of 1j. If we define

t B exp nt)B} = 0 (n t)j B , then B is an exponent for p if

(u) t = tB w*(b(t)) , t >0,

where 6(b(t)) is the unit mass at b(t) eV and t W =it -  In [7] it was proved

that full OS distributions always have at least one exponent.

An exponent of a full OS law 1i determines much of its structure. (See [21 and

[7) for the results which are now described.) In general vi has both a Gaussian

component '1P and a Poisson component i . These components are concentrated on
g p

independent subspaces determined by the exponent B. To be precise let f(x) de-

note the minimal polynomial of B. Then f(x) =g(x)h(x) where the roots of g have

real parts equal to 1 while those of h have real parts greater than . The Gaus-

sian component vi is concentrated on V -kernel(g(B)) while 1i is concentrated on
g g P

V -kernel(h(B)). Furthermore VVg %vp , vi and Li are full and OS on V and V

p g p g p
respectively. The exponents of p and ii are the restrictions of B to V and V

g P g p

respectively. Now let M denote the Levy measure of ',i. The exponent determines a

major part of the structure of M. From (1) upon noting that tM is the L~vy measure
MtB-BBB

of vt and that tBMt is the L~vy measure of t vi, one sees that t'Mt BM. This

fact can be used to show that if A is a Borel subset of V , then
p

(2) M(A) = f M (A)K(dx)
L X
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where K is a finite measure on a Borel subset L of the unit sphere U in V an,; 11 is

also satisfies the condition that tMX=t BM deeind a: Th revesultrc
concentrated on the single orbit ic tBx:t O}derid y.Th v eauLM

M (tB X: t >s l /s, s>0
x

.(i.e M (A t B -2s /s 0

(A) ='IA(t Bx) t- 2 dt). From (2) it follows that the support of M is the
x 0A

union of orbits of t . Each orbit begins at the origin and extends to infinity

(i.e. lim tB x-O and lim ltBxjl =-). The shape of these orbits is determined by

the exponent B. In particular cases orbits can be straight lines (B = AI ), half

1 0 2i-i
of a parabola (B =( 0 2)' V=IR ) , or spirals (e.g. B=( ) =I+Q where Q+Q*=0

so tQ is a rotation). The expression for M above shows that the tail behavior
x

of M along orbits is determined by B. The measure K assigns weights to the orbits

and determines which orbits are included in the support of M. Together B and K

determine M. But, in general B and K are not unique. Is there a reasonable way

to choose a particular exponent and measure K? The set of exponents depends on

• .the amount of symmetry possessed by v. Call a linear operator A on V a symmetry

of 'w if for some a EV, VI=Au*6(a). It is natural to expect that a symmetry of w

should take orbits into orbits while leaving K invariant. (See Theorem 7 below.)

B B . B
In particular, if BA =AB, then At x =t Ax (since t is a power series in B) so

orbits are taken by A into orbits. Furthermore the requirement that B commutes

with every symmetry tends to pick out exponents with nice properties whenever

possible. (See Theorems 4 and 5.)

d
Example. Suppose that vi is the standard Gaussian measure on IRd . If X and Y

are i.i.d. 1j, the measure corresponding to X+Y is vi*v =2 2vi. One suspects (and

easily verifies) that 1 is an exponent for vi. Suppose that S is a skew operator,

S S S
that is, that S +S* =0. For each t >0, t is orthogonal and so t Si =p, i.e. t is

a symmetry of vi. It follows that 1 +S is also an exponent for vi, for any skew

operator S (see Theorem I below). Thus operator stable measures may have many

b..........



3

c ponents; the number of exponents depends on the size of the collection of sym-

metries of ->. Does an operator stable measure have a "simplest" exponent?

A lemma of Schur's ([6], p. 173) suggests a possible answer. This lemma

s savs: "Let F be a fam ly of linear operators on a Hilbert Space H and suppose

that the only closed subspaces which are invariant under every operator in F

are Oi and H. If A is a self-adjoint linear operator on H that commutes with

, v,'rv operator in F, then A=cI for some scalar c." (As usual, I denotes the

identity operator.) Schur's Lemma suggests that the "simplest" exponent would

be one which commutes with a large collection of operators. In this example, !I

is the only exponenet of p which commutes with every symmetry of p. We will

;how below that there is always an exponent of p which commutes with all the

symmetries of u. (Theorem 2)

Our results on commuting exponents are applied to simplify the representation

" of the ,.vy measure oF an OS law in section 3. There we define a new norm. The

unit sphere relative to this norm plays the role of L above. The corresponding

* mixing measure K does not depend on the choice of an exponent (Theorem 6). Tis

representation provides a simple relationship between the symmetries of i; and

those of K. These results complement those of Kucharczak [S], Jurek [3], and

Hudson-Mason [2].

1. Preliminaries

Let W be a full OS probability measure on a finite dimensional real vector

space V. GL(V) denotes the set of all invertible operators on V. For AEGL(V),
-I

we define AV =oA . Two groups of interest in connection with p are the symmetry

group

S(M) = {AEGL(V): Ap*6(a) - p for some a EV1

and

G= {AEGL(V): for some t >0, for some aEV, pt A1 *(a)}.

I%
'2Z*
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It is known that S(ij) is a compact, normal subgroup of G. For any closed group P,

TH will denote the tangent space of H. Thus AETH if and only if A lim (Hn -I)/d nn n
n-*oo

- " where cH } c- and {d } is a real null sequence. We recall that the exponential
n n

* " maps TH onto the connected component of I in H. CH will denotc the center of H,

. that is, those elements of H which commute with every element of H. Recall that

CH is a subgroup of H.

The collection of exponents of ,, denoted E(U), is the set of all operators

for which (1) holds. The following result gives a basic fact about exponents.

Theorem 1. Let BE E(,). Then

(i) Every eigenvalue of B has real part - !,

~(ii) E(U B + TS(.

For a proof of this result see [1] and [7].

2. Commuting Exponents

In this section we investigate the existence of an exponent which commutes

with every operator in S(). Such exponents will be called commuting and the

collection of commuting exponents will be denoted by E (u).

Proposition 1. Let A_ S (u) and B E E(). Then ABA E (i ) . Moreover, if S(u)

is discrete, the unique exponent B is commuting.

Proof. We have AL uu*6(a) and

i- tB* (bABu* (bABA-I

(A) t = AUt = A(t B*6(b(t))) = A VI*6(Ab(t)) t (Au)*6(Ab(t)).

' " Hence

t ABA 1  ABA 1

W = t j*6(Ab(t) - ta + t a)

* -1
and ABA EE(u). Now if S(u) is discrete, TS(i) =0 and B is the unique exponent.

Thus ABA =B and B is commuting. (QED)

The following example shows that not all exponents are commuting.

i

.*. . -. ,..,. . .,:.-,.. ... + ...., ..., * ... ... . ,., . . . . .. . . ... .. .. . . . . ... '



5

2
Example. Let ,i be the symmetric Cauchy distribution on R Then I E(N) and S()

is the full orthogonal group. Hence TSO) consists of the skew synmmetric operators.
11 10] ()

By Theorem 1, EN) =I+TS(4) so B =is an exponent. Also A [-S

direct c¢mputation shows that AB #BA. Furthermore, A does not map orbits into other orbits.

The main result of this section is that commuting exponents always exist.

Theorem 2. E () is non-empty.
c

Proof. Let H be a Haar probability measure on the compact group S(1), and let

B E(,) . Define

M = f sBs dH (s).
S N)

Since E(.) is closed and convex by Theorem I and closed under conjugation by

elements of S(1j) by Proposition 1, M EE( ). If A E S( j), then by the invariance

property of Haar measure

AMA = AsBs dH(s) f (As)B(As) dH(s) f sBs dH(s) M.

S SG) S(u)

Thus M E E(). (QED)

The collection of all commuting exponents is characterized in our next result.

Theorem 3. Suppose B E E cuN). Then E CN) B + TCS(.). r

Proof. Assume B E E(L1'). Using the relation between groups and their tangent

spaces one readily verifies the equivalence of the following statements.

(i) BE u),
c

(ii) B - BETS() and B - B commutes with every element of S(W).

(iii) For all t, exp{t(B.-B)} JE CS(), and

(iv) B - B ETCS(G). (QED)

Corollary. E () =E(u) if and only if TS(u) =TCS(").
c

We now examine the extent to which the structure of a commuting exponent is deter-

mined by the "size" of S(u).
%

%o

*"11

• . : -',, . , , ,.,.-......,'....*. :. .... , ., .. ,., 'N:- Y -AA'., ',,,,-,:, . , V>..



Theorem 4. Let B EE (i). If the only proper subspace of V invariant under S()
c

is 0, then B = XI +WQW -
, where W is positive definite and Q is skew symmetric.

Q2 W2W-1 o

Furthermore either Q =0 or Q =WQ W =-I for some 3 >0.

1'roof. Since S(u) is compact, there is a positive definite operator W and a

closed subgroup G of the orthogonal group such that

S(2 = WGW-

- ,,,i1ows that S(W-) =G. Since 8EE ( ), B W BW t E (W- I;). Write B. =BI +B2cl~i . 0 c 1 2

where B= '-(B0 +B0*) is self-adjoint and B2 = .,(B0 -o*) is skew-symmetric. Since

B ':E (W ',) AB0 =B A for A EG. Take adjoints to see that B *A* =A*B 0* for AiG.

But every operator in G is orthogonal so G = {A*:A G}. Thus

ABo* = B *A, A E G.
00

I- follows that every operator in G commutes with B which is self-adjoint. Now

by hypothesis the only proper subspace of V invariant under S(v') and hence under

G is 0. 3y Schur's Lemma, B, =  l for some real number . Now consider B2.

Since B is skew-symmetric, it is normal and thus its minimal polynomial is the
2

product p1(X),... Pk(x) of distinct irreducible polynomials. If k>l, then

ker p (B2) is a proper subspace of V which is invariant under G contrary to our
2 2

hypothesis. Thus k =1 and the minimal polynomial of B is either x or x- +S
2

for some 3>0. (A skew-symmetric operator has purely imaginary
Ili envalues). If it is x, thenB 0; otherwise, B 2 = _ 21. FromB=B+B,)=I +B, , we

2 201 2'
'btain upon setting Q =B 2 ,

W-BW = I + Q
-1

or B = ',I +WQW Finally B E E(vj) so the real part of every eigenvalue of B is

not less than , i.e. X>. (QED)

Corollary. If in addition to the hypothesis of the theorem, either B is diagona-

lizable or dim V is odd, then 3= I.

...
' - - ---.-- 

' '
..................................
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Proof. First suppose B is diagonalizable. Let v be an arbitrary eigenvector of

B so Bv = 0v for some real A0. By Theorem 4, B = AI +WQW -  so v is an eigenvector

of WQW-  In particular WQW-1 v = (X0 - N)v. Hence (WQW)-v - 2 V But

-l-1 2 2- QW =0 or (WQW )2=_2I. In either case it f3llows that =X. Since B is
0

diagonalizable, B= Al. Now suppose dim V is odd. Since Q is skew symmetric,

j det Q = det Q* = det(-Q) = -det Q,

SQ2 2so n is singular. Hence Q #-s I and therefore Q =0. (QED)

A slight refinement of the preceding theorem is given in

Theorem 5. Suppose B E Ec () has p real eigenvalues X11A .'A p with corresponding

eigenvectors vI .... v . If {Av.: AES(J) 1 <i-p} spans V, then B is diagonali-p 1

zable with spectrum {XI ..., p 1. Thus if X = ... X =X, B = XI.. , p 1P

Proof. For AES(1), BAv. =ABv. = X.Avi, so Av. is an eigenvector of B with eigen-

value .i Hence there is a basis of V consisting of eigenvectors of B and so B is

diagonal izable. (QED)
%2

Corollary. In R if B E E (i) and if there is a reflection A ES(I), then B is

self-adjoint.

Proof. Select orthonormal vectors v1 and v2 so that Av1 -v and Av v Then
1 1 2 =-v. Then

ABv, =B ! and ABv 2 = -BY2, so Bv1 -X-1,v 1 and By2 -= X2v 2 where X1 and X2 are real.

(QED)

3. Thc l,6vy measure

In this section we discuss the relationship between commuting exponents and

the representation of the L6vy measure of ji. Since , is infinitely

divisible, one can write the characteristic function of u in the canonical f(erm
6 0(y) = exp{i<y,a>- <y,2Zy> + fiP(x,y)M(dx)}

0"" where a EV, Z is a non-negative definite self-adioint one-nine, N

r%

'%
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.- finite measure satisfying

f il llx l 2A IM(dx) < .

and
:i<x ,y>

C.(x,y) = exp{i<x,y>} - +<xx>

For OS measures it has been shown that one can further decompose the 1,6vy measure

\1 as follows. For an exponent B of li set LB = {Txl!=l and lit Bx j>1 for all

t " i and define the mixing measure K on the Borel subsets A of I, by
B ~B

K9(A)= .({t x: xE A, t > 1}).

Thus KB assigns mass to the particular orbits {t x t . Note that both 1T

:ind K depend on the choice of exponent B. In terms of K the l,6vv measur

B B

M is given by

B -2(3) im(S) = f Is(t x)t dtdKB(x)

B

(se f2] and [3].) It was necessary to introduce the subset 1I of Ii since for

,ome exponents, orbits may intersect the unit sphere more than once.

W now introduce a new norm I Il which depends on the particular OS law

bit not on the choice of exponent. The tunit sphere I" =fv: vi =} induced by

thi' norm will intersect each orbit once and so may play the role of LB. As

above we define a mixing measure K on the Borel subsets A of II' by

B
K('N)-'t x: x-A. tI. This measure K also does not depend on the choice of

.xponent and the representation (3) of the l,6vy measure NI in terms of K is

Still val id. The new norm leads to a system of "polar" coordinates with nice

properties. (cf. .Jurek [4]).

For x, V. and W1itu) define I xi Ixll ?f I (t xl III(dg)t dt where H1

-.air denotes Haar meas,,re on Sfj,) and I11 is the original norm on V.

Propo';ition 3. If jn is ful I and OS on V, then

' I . doe not depend on the choice of B, E(1),

" } I I ' 1 norm on V

r A-S , = I x

(i . t i [tx[ is strictly increasing on (0,-.) for each x/o, and

A %',
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(s') themap deine by B~xt) B x is a homeomorphisn

when U'x(0,co) has the product topology.

Proo f. U/). Let Br EMLI and let B r () By Theorem 1, BotTS(CO so for
0 FC~)

'II11I t.~0, B%0t BB ~ OB 0*Differentiate to see that B0commutes with B-B 0 and con-

B= B-BO BO
sequently that t t 0 t ~.For xL V, use the invariance property of Iiaar

measure to obtain the equalities

IllxflBf f gtxltH(dg)dt
0 S(M

f f 19 gBBOB0x 1 t- IH(dg)dt= ixiB
0 S GO 0

This proves ()and allows us to omit the subscript B.

U"i) This is obvious.

(i)Let A&- SGp). By(i

we may assume that Bc E (v) Then

I -B
x !111 =J J j1gt' Axfl t H(dg)dt

o S OP,

(1o) Suppose that 0 <r < s . Then

1*j fBx Ill= f f 1g(tr)B x~l t - H(dg)dt
0 S(Wi)

r B -
=Jf flgu xf u- H(dg)du
0 S(1j)

BB

V checkied. Tno owt,: is ontious wr cnnite of 1=(x,t) sswllkow ta d
BB

fxU', C,(x) '0 and x=C(x) B Qx). Suppose that x~ U . Assume some subsequerceLn



'I0

(x , tends to infinity. Then since the cigenvalues of B have positive real

V Irt, x , = (x n)Bt( ,)[I+ ) contrary to the convergence of x It follows11 ~~~~~I n'fox(0letows :

t1.it ( .) , I'(X )) is a bounded sequence in U'x(O,-). let (('(x ,), J,(x ,)) bt an.I1 n ll

,,ver,,cvnt subsequence and let ( 0' o)=lim(X (x Then

x=lim x =lim (x)B )= B
n' n n' 0 0*

.SineO is one-to-one, and (x)-.. Thus every convergent subsequence

of (((x), rix )) has the same limit, namely (Z(x), C(x)). This proves thatn n

-1(Q)

ploo '-thnt ' i, continuous was given above for the sake

tC.'. [41.

Part ('W) of Proposition 3 implies that each orbit intersects U' exactly

once. The fact that U' is closed and that (B is a homeomorphism is useful in
B

proving weak convergence results.

Theorem 6. Let 0 be full OS with L&vy measure M and let B_ E( .). Let F and

F be any Borel subsets of V\{O} and U' respectively. Then

B -2
(4) M(F)= fIF(s x)s dsK(dx)

U' 0

where K is a finite Borel measure on U' and

(31 K(E)=M't x:x e E,t~l}

The measure K does not depend on the choice of Bc EO').

illot. The proof of (4) ;1nd (5) is similar to 11hat of , ) in [21 or 1  11d is

S)1l-t(' '(' Ofll tteL.

I he proof that K does not depend on the choice of exponent will

involve :in easy 1emma.

lemma 3.1 let g S(Ij) and B r E(k). If gB Bg, then gK = K
B B*

0--..% ' - ' " ... ''% - ,'% -' . .i ',' . ', '' .'" . .'. ,", , - - - ." ". ' ' ". . .•• . . . . .. .. . ,

S."% "'- - r , ,-,; % ."," t--' ._. ". '. '.. - ,. . . . . . . .. , ,," .- ••. .• -.-. ,.' ,,W,.
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Proof. L.et 1) be any Borel subset of U' Then

pKB(I)) = KB(g-I(D))

B -1
= ,{t x: x E (), t i1

-~ RI
S gX: X E D, t > 1

IlBM(g It x: x c D, t > 1))

- (gM)({t Bx: x c D, t > I}).

But g c S(p) and hence gM = M. Thus

gKB(I)) = N{t Bx: x c 1), t > 1} = KB(I) (Ol

- Now let A be any Bore] subset of V\fO}. Then if B ENi)

B -2
M(A) = f f TA(t x)t KB (dx) at

0 U'

f KB ((t-B A) n U') t- 2dt.

L*et B0 r Ec (u). It suffices to prove that KB  K So let D be any Borel

subset of U, and put A ={s Bx: x c D, s > 1}. Then

i

--

'•.

%.%; .* *. d .y

', '. 'I . i % ° ., " " .% "," ." ."..". % " . ." % ,'. .' , " ", V * - * . * , . . . ,. .
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= B if t <1i

(t A) n U'
ID if t >- 1.

* - Hence

B0  -2
K KB(D) =M(A) f fK B ((t A) n U1')t dt.

0
* B- B

111t B 'Ii(ii) so B commutes with B-B .Furthermore tS()
0 c 0 0

B-B
a ~ nd t W U'. It follows from Lemma 3.1 that

-B B- 0  -B
K ((t A) n U') =KB ((t (t A)) n U')
B0  B

0- B0

-KB ((t- A) n U').
0

Thlerefore,

CI) = B -2
K BOO f0 K B 0((t- A) n U')t- dt.

=f1o (D)t -2dt =K B0 (D). (OED)

1 0B



Remark. There is a converse to Theorem 6. If B is an OS exponent, and if K

is a finite Borel measure on U' 1 VP, then the measure N1 detfineci hN

M(F)= f I (s Bx)s 2dsK(dx)
,.- 0

is the Levy measure of some OS law with exponent B. Again see [2] or [3].

[n [71 Sharpe characterized the set of OS exponents, i.e. those operators

which are the exponent of some OS law.

We now consider the relationship between S(K), the symmetry group of the

measure K in Theorem 6, and S(u).

Theorem 7. Let P be a full OS measure on V. Then S(i)- S(K).

Proof. Let A r S(i). Since by Proposition 3, 11 AxJ -illixll , AU'=U'. Since

K does n.ot depend on the choice of an exponent, we may assume B. E ().
c

Then S(I) S(K3 follows from Lemma 3.3. (HEl))

The following example shows that even if an OS measure Ji has no

(;aussian component, if the original norm on V is used and if Ni is

. de fined is in (3), then S(K) may be much larger than S(ji) even thouph K is

fi I. (I1 see that in this example 1i has no Gaussian component, note that no

C igtI)VA I LIe of R has real part equal to 12).2.

Example. Take B = [2 ]. Then LB is the unit circle in R2 . Let K be the Lebesgue

measure on the circle. Then K is full and S(K) is the orthogonal group. Define M

(and hence ) in terms of K and B using equation (3). Then i is a full OS measure

2with B EEN) (see [2]). We now find S(u). First note that S(I') is closed and V=R

so if S('i) were not discrete, S(P) would be conjugate to the orthogonal group. Then

. by Theorem 4, B would have conjugate complex eigenvalues. Hence S(p) is discrete, and

by Proposition 1. Now suppose D= S(M). Then since BeE (j) BD= DB and
C c

So c =b =0. Since S(p) is a compact group, the fact that D _S(ul) for all n shows
" -':'..

;a! =;d! .. A direct computation now shows that S(ui) =S(M) -1 ±, 0 .[

J.
-- N.
b..%. . . **~.'~ % % -
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